- 63 year old female presented with 2 month history of gastric pain
- EGD was performed and a large, partly ulcerated mass was biopsied

- FISH studies were performed
- *IGH::MYC* was identified
- Reflex testing showed additional evidence of *IGH::BCL2*
- *Diagnosis:* High grade B cell lymphoma with MYC and BCL2 rearrangements (double hit lymphoma)

Diagnostic evaluation in aggressive B cell lymphoma and related entities

Dennis P. O'Malley, MD

I apologize...

- I've become "that guy"
- I will be showing a lot of Kaplan-Meier survival curves
- I used to hate this in "pathology" lectures

Aggressive B cell lymphomas:

- What this lecture includes:
 - High grade B cell lymphoma, with BCL2 and/or BCL6 with MYC
 - High grade B cell lymphoma, NOS
- What this does not include (but there is some comparison and discussion):
 - DLBCL, NOS

Practice Guidelines in Oncology* National Comprehensive Cancer Network®

• ESSENTIAL

- Adequate immunophenotyping to establish diagnosis and GCB versus non-GCB origin
- IHC Panel: CD20, CD3, CD5, CD10, CD45 (!?!), BCL2, BCL6, Ki67, MUM1, MYC
- With or without flow cytometry: kappa/lambda, CD45, CD3, CD5, CD19, CD10, CD20
- FISH for MYC; if positive FISH for BCL2, BCL6 rearrangements

• USEFUL UNDER CERTAIN CIRCUMSTANCES

 Additional IHC studies to establish subtype: cyclin D1, kappa/lambda, CD30, CD138, ALK, HHV8, SOX11, EBER

NB: It used to say "expert hematopathology review"!

When to test for MYC translocation?

The WHO 2017 guidance is not all that clear:

- "Because (DHL) cannot be distinguished from DLBCL, double hit status should be investigated in <u>all</u> DLBCL using cytogenetic or molecular cytogenetics studies"
- "Some pathologists prefer to look for DHL status only after IHC or other pre-selection"
- "MYC protein expression <u>cannot be used</u> for the selection of cases that should have cytogenetic or molecular/cytogenetic evaluation"

t(8;14) AND t(14;18), with some other abnormalities

DLBCL with tMYC

MYC immunohistochemistry

- In DLBCL and related entities MYC is "always" expressed
- There is no "positive" or "negative" cut off
- As percentage increases the likelihood of translocation increases
 - In study I performed no translocations below 40%
- There is a *null* immunophenotype
 - Expression is zero (not normal)
 - There is a mutation that changes the epitope so it is not detectable by IHC

MYC versus P53

TP53 Tumor suppressor

MYC

P53 expression patterns

- P53 wt
- P53 increased
- P53 null (mut) usually frameshift or nonsense
- P53 mut (missense)
- P53 cytoplasmic (mut) usually frameshift or nonsense

MUST SEE LECTURE: <u>https://isimm.org/education/isimm-webinars/pan-cancer-applications-of-p53-immunohistochemistry/</u>

DLBCL

WHO 2022 vs. ICC

- Here's what I know (subject to change)
 - WHO
 - Double hit/HGBCL will be limited to MYC with BCL2
 - MYC with BCL6 will be removed from double hit (reclassified or demoted?)
 - I think it is unlikely that *TP53* mutation will be addressed in a significant way
 - ICC
 - Who knows?

Molecular classification of aggressive lymphomas—past, present, future

Kirsty Wienand | Björn Chapuy

Lymphoma subtype	cHL	B-NHL				
Morphology / Clinically	HRS cells	PMBL	PCNSL / PTL	THRBCL	DLBCL	
Transcriptomics	cHL	PMBL	PCNSL / PTL	DLBCL ABC / GBC / unclass		
Cytogenetics	cHL	PMBL	PCNSL / PTL		DLBCL	HGBL MYC, BCL and BCL
Genomics	CHL JAK/STAT, NF-KB, 9p/9p24.1	PMBL JAK/STAT, NF-KB, 9p/9p24.1	PCNSL / PTL 9p/9p24.1, <i>MYD88</i> ^{L256P} , <i>NFKBIZ</i> copy gain	Genetic subtypes C1-C5 vs. NCI groups		HGBL MYC, BCL and BCL

FIGURE 1 Aggressive lymphoma is classified into different entities and subtypes based on morphology/clinically, transcriptomic, cytogenetic, and genomic features

Molecular classification of aggressive lymphomas—past, present, future

Kirsty Wienand | Björn Chapuy

(B) (A) **Genetic Subtype** C4 Cluster Transcriptional Prognosis Key Features ABC GCB uncl. na DFCI NCI Subtype BCL6 and NOTCH2- and NF-kB and MY SI C1 BN2 immune escape pathway alterations; ABC Favorable 12". "Ame A Care occulty transformed MZL Landmark Alterations ABC/GCB (A53/ Biallelic inactivation of TP53, Steady rate of C2 **TP53**) 9p21.3/CDKN2A; genomic instablity independent progression BCL2 SVs. C3 inactivating PTEN alterations and EZB GCB Unfavorable alterations of epigenetic enzymes BCR/PI3K-, JAK/STAT-, RAS-pathway ST2 C4 GCB Favorable and histone alterations S.H. BCL2 copy gain, activating MYD88 C5 MCD ABC 6 44 61 Unfavorable and CD79B mutations; extranodal tropism IMutations Gains Losses Translocations Significance Samples

FIGURE 2 Discovery of genetic DLBCL subtypes (A) with associated genetic, transcriptomic and prognostic features (B). DLBCL, diffuse large B-cell lymphoma

Aggressive B cell lymphoma: gene mutations

Fig 2. The most frequently mutated genes and their frequencies in diffuse large B-cell lymphoma (DLBCL). JOURNAL OF CLINICAL ONCOLOGY

REVIEW ARTI

Clinical Applications of the Genomic Landscape of Aggressive Non-Hodgkin Lymphoma Andrea B. Moffiti and Sandeep S. Dave

Comparison of Aggressive B cell Lymphomas

	Burkitt Lymphoma	DHL	DLBCL with <i>MYC</i> translocation
Morphology	Usually distinctive, monomorphic, intermediate cells	Usually DLBCL	Usually large cells, pleomorphic
IHC CD10/BCL6 BCL2 Ki67	+/+ - 100%	Var/var +/- Var (usu >80-90%)	Var/var +/- Var (usu >80-90%)
MYC IHC	100%	>70%	100%
MYC FISH	+	+	+
<i>IGH-BCL2</i> FISH or <i>BCL6</i> FISH	-	+	-
Genotype	Simple	Complex	Complex

What does the FISH show?

High-grade B-cell lymphoma, with MYC and BCL2 and/or BCL6

AKA: double hit; triple hit

Histology: Burkitt, intermediate, or DLBCL

Immunophenotype:

GCB type B cell (usually): CD10+, BCL6+, BCL2+

Ki67 > 95% (usual, but range of 30-100%)

Cytogenetics:

WHO 2017

t(14;18) *BCL2* rearrangement or 3q27 *BCL6* t(8;14) *MYC* rearrangement (or equivalent)

Prognosis:

Poor response to usual therapy (R-CHOP); survival < 1 year

HGBCL, with MYC, BCL2 and/or BCL6 rearrangement

- Must have MYC translocation
 - Amplification does not qualify
- Must have BCL2 or BCL6 or both translocations
 - Double hit: (MYC, BCL2 or BCL6)
 - Triple hit: (MYC, BCL2 and BCL6)
- Excluded: FL and B-ALL (with double or triple hit)

Overall survival of no MYC, MYC single hit, DHL/THL

Cho YA, Hyeon J, Lee H, Cho J, Kim SJ, Kim WS, Ko YH. MYC single-hit large B-cell lymphoma: clinicopathologic difference from MYC-negative large B-cell lymphoma and MYC double-hit/triple-hit lymphoma. Hum Pathol. 2021. PMID: 33771538.

Somatic copy number gains in MYC, BCL2, and BCL6 identifies a subset of aggressive alternative-DH/TH DLBCL patients

Jordan E Krull ¹ ², Kerstin Wenzl ², Keenan T Hartert ², Michelle K Manske ², Vivekananda Sarangi ³, Matthew J Maurer ³, Melissa C Larson ³, Grzegorz S Nowakowski ², Stephen M Ansell ², Ellen McPhail ⁴, Thomas M Habermann ², Brian K Link ⁵, Rebecca L King ⁴, James R Cerhan ³, Anne J Novak ⁶

Affiliations + expand PMID: 33168821 PMCID: PMC7652824 DOI: 10.1038/s41408-020-00382-3

> Blue lines show "alternate" double hit Red lines show usual double hit

Take home message: Copy number variation (CNV) matters in these genes

Fig. 2 Survival outcomes of Alt-DH/TH patients. Kaplan–Meier survival curves for event-free/progression-free (EFS/PFS) and overall survival (OS) of DH/TH, Alt-DH/TH, and Other (translocation positive + copy gain positive + no alteration patients). Progression-free survival is a combination of EFS from one study and PFS from another. **A** Progression-free survival (p = 0.013) and overall survival (p = 0.0012) of all Alt-DH/TH (n = 51), DH/TH (n = 21), and Other cases (n = 410) in the combined cohort. **B** Progression-free survival (EFS/PFS) (p = 0.011) and overall survival (p < 0.001) of Alt-DH/TH (n = 51), DH/TH (n = 21), and Other cases (n = 410). The combined cohort. **B** Progression-free survival (EFS/PFS) (p = 0.011) and overall survival (p < 0.001) of Alt-DH/TH cases separated by COO class (ABC-like, n = 15; GCB, n = 25; NA/unclassifiable, n = 8), all DH/TH (n = 21), and all Other cases (n = 410). **C** Progression-free survival (EFS/PFS) (p = 0.012) and overall survival (p = 0.001) of ABC-like Alt-DH/TH (n = 15), DH/TH (n = 21), and ABC-like Other (n = 151) cases in the combined cohort. p Values listed on each graph were derived from a Log Rank test.

HGBCL, NOS

- Excludes DLBCL morphology (p. 335); blastoid OR intermediate between DLBCL and BL (p. 335)
- *MYC* translocation ALONE <u>does not qualify</u> for this diagnosis (e.g. DLBCL, NOS with *MYC* translocation)
- Double expressor <u>does not qualify</u> for this diagnosis (IHC MYC+, BCL2+)
- My understanding is cases "with *MYC* **amplification**, and another translocation (*BCL2*, *BCL6*) and Burkitt-like morphology" *OR*
- *MYC* translocation, *BCL2* amplification and Burkitt-like morphology *OR*
- Blastoid morphology
- This diagnosis should be **extraordinarily rare**

P53

Mutational profile and prognostic significance of TP53 in diffuse large B-cell lymphoma patients treated with R-CHOP: report from an International DLBCL Rituximab-CHOP Consortium Program Study

Impact on survival is more pronounced on patients with GCB phenotype. >50% expression by IHC, best predicts survival effect

The prognosis of *MYC* translocation positive diffuse large B-cell lymphoma depends on the second hit

MYC/P53 is as bad/worse than double hit *BUT....*

P53 had no independent impact on prognosis (???)

p53 Expression Is a Strong Marker of Inferior Survival in De Novo Diffuse Large B-Cell Lymphoma and May Have Enhanced Negative Effect With MYC Coexpression

A Single Institutional Clinicopathologic Study

Yi Xie, MD PhD,¹ Mohmad Ajaz Bulbul, MD,² Lingyun Ji, MS,³ Casey M. Inouye, MD,⁴ Susan G. Groshen, PhD,³ Anil Tulpule, MD,⁵ Dennis P. O'Malley, MD,⁶ Endi Wang, MD, PhD,⁷ and Imran N. Siddiqi, MD, PhD¹

Survival in DLBCL and HGBCL types

Aggressive B-cell Lymphoma with MYC/TP53 Dual Alterations Displays Distinct Clinicopathobiological Features and Response to Novel Targeted Agents

Manman Deng ^{# 1 2}, Zijun Y Xu-Monette ^{# 1}, Lan V Pham ^{# 3}, Xudong Wang ^{# 1}, Alexandar Tzankov ⁴, Xiaosheng Fang ¹, Feng Zhu ¹, Carlo Visco ⁵, Govind Bhagat ⁶, Karen Dybkaer ⁷, April Chiu ⁸, Wayne Tam ⁹, Youli Zu ¹⁰, Eric D Hsi ¹¹, Hua You ¹², Jooryung Huh Maurilio Ponzoni ¹⁴, Andrés J M Ferreri ¹⁴, Michael B Møller ¹⁵, Benjamin M Parsons ¹⁶, Fredrick Hagemeister ¹⁷, J Han van Krieken ¹⁸, Miguel A Piris ¹⁹, Jane N Winter ²⁰, Yong Li ²¹, Bing Xu ²², Phillip Liu ²³, Ken H Young ²⁴ ²⁵

Double-hit Signature with *TP53* Abnormalities Predicts Poor Survival in Patients with Germinal Center Type Diffuse Large B-cell Lymphoma Treated with R-CHOP

Joo Y. Song^{1,2}, Anamarija M. Perry³, Alex F. Herrera^{2,4}, Lu Chen^{2,5}, Pamela Skrabek⁶, Michel R. Nasr⁷, Rebecca A. Ottesen⁸, Janet Nikowitz⁸, Victoria Bedell^{1,2}, Joyce Murata-Collins¹, Yuping Li¹, Christine McCarthy⁸, Raju Pillai^{1,2}, Jinhui Wang⁹, Xiwei Wu⁹, Jasmine Zain^{2,4}, Leslie Popplewell^{2,4}, Larry W. Kwak^{2,4}, Auayporn P. Nademanee^{2,4}, Joyce C. Niland⁸, David W. Scott¹⁰, Qiang Gong¹, Wing C. Chan^{1,2}, and Dennis D. Weisenburger^{1,2}

- Cell-of-origin
- MYC, BCL2, BCL6 (DHL, THL)
- GEP (DHITsig) double hit signature without MYC
- Double expressor

<u>GROUPS</u>

- GCB1: TP53 with DHITsig
- GCB2: DHITsig, TP53 negative
- GCB3: *EZH2* mutation and/or *BCL2* translocation positive (AKA EZB)
- GCB4: no DHITsig, lack *EZH2*, lack *BCL2*, lack *TP53*

	% of cases	OS/PFS		
GCB1 (DHsig+TP53)	8%	9.2/6.1	Very poor prognosis	Clinical trial
GCB2 (Dsig, no TP53)	9%		Good prognosis	R-CHOP +/- anti- BCL2 or anti-EZH2
GCB3	32%		Intermediate prognosis	Clinical trial using R- CHOP and anti-BCL2 and/or anti-EZH2
GCB4	21%		Good prognosis	R-CHOP

SUMMARY

- Can't find what you don't look for!
- Aggressive B cell lymphoma
 - Screen with MYC & BCL2 IHC (double expressor)
 - Perform FISH in all candidate cases (MYC, with reflex to BCL2, BCL6)
 - Screen for P53 (IHC) (mutant high or null => *TP53* mutation status)
 - Can have very aggressive behavior and different therapy
- It is unclear if the WHO22 and ICC (ICK!) will address HGBCL in a meaningful way, but changes will undoubtedly be coming

Questions?

dennis.omalley@neogenomics.com