CASE 4

A 70-year-old woman with a history of diabetes, hypertension and kidney failure presented with acute onset of fatigue and dizziness. Physical examination showed B-type symptoms. Laboratory evaluation showed hypercalcemia. PET/CT showed lymphadenopathy, splenomegaly and bone lesions. This is a right axillary lymph node needle biopsy.

Case 4

DIAGNOSIS (CASE 4)

Diffuse large B-cell lymphoma

The neoplasm also has:

Germinal center B-cell immunophenotype Double expressor immunophenotype Ki-67 ~70% *MYC* not rearranged *BCL6* rearranged *BCL2* not rearranged

Diffuse Large B-cell Lymphoma Definition

DLBCL is a neoplasm with a diffuse growth pattern composed of medium or large B lymphoid cells with nuclear size equal to or exceeding normal macrophage nuclei, or more than twice the size of normal lymphocyte nuclei

WHO Classification of Diffuse Large B-cell Lymphoma (2017)

Diffuse large B-cell lymphoma, NOS GCB versus ABC/non-GCB CD5

Other lymphomas of large B-cells

T-cell/histiocyte-rich large B-cell lymphoma **Primary DLBCL of the central nervous system Primary cutaneous DLBCL, leg-type** Primary mediastinal (thymic) large B-cell lymphoma Intravascular large B-cell lymphoma **DLBCL** associated with chronic inflammation Lymphomatoid granulomatosis **EBV+ diffuse large B-cell lymphoma** ALK+ large B-cell lymphoma **Plasmablastic lymphoma** HHV8+ lymphoproliferative disorders **Primary effusion lymphoma**

Borderline cases

High-grade B-cell lymphoma (NOS versus double hit) B-cell lymphoma, unclassifiable, intermediate between DLBCL & CHL

Diffuse Large B-cell Lymphoma R-CHOP is Standard Frontline Therapy

Rituximab Cyclophosphamide Hydroxydaunorubicin/Adriamycin Oncovin/vincristine Prednisone

Bertrand Coiffier, MD

CHOP CHEMOTHERAPY PLUS RITUXIMAB COMPARED WITH CHOP ALONE IN ELDERLY PATIENTS WITH DIFFUSE LARGE-B-CELL LYMPHOMA

Bertrand Coiffier, M.D., Eric Lepage, M.D., Ph.D., Josette Brière, M.D., Raoul Herbrecht, M.D., Hervé Tilly, M.D., Reda Bouabdallah, M.D., Pierre Morel, M.D., Eric Van Den Neste, M.D., Gilles Salles, M.D., Ph.D., Philippe Gaulard, M.D., Felix Reyes, M.D., and Christian Gisselbrecht, M.D.

N Engl J Med 346: 235, 2002

Diffuse Large B-cell Lymphoma NOS Clinical Findings

Median age Male Stage I-II **III-IV B** symptoms **BM** involved **IPI 0-1** 2-3 4-5

64 y (wide range) 55% 54% 46% 33% 16% 35% **46% 19%**

Diffuse Large B-cell Lymphoma International Prognostic Index

- **Performance status**
- LDH
- **Extranodal sites**
- **S**tage

Age

- ≤ **60 vs.** >**60 years**
- 0-1 vs. 2-4
- Normal vs elevated
- \leq **1** vs >**1** site

I-II vs III-IV

An enhanced International Prognostic Index (NCCN-IPI) for patients with diffuse large B-cell lymphoma treated in the rituximab era

Zheng Zhou,¹ Laurie H. Sehn,² Alfred W. Rademaker,¹ Leo I. Gordon,¹ Ann S. LaCasce,³ Allison Crosby-Thompson,³ Ann Vanderplas,⁴ Andrew D. Zelenetz,⁵ Gregory A. Abel,³ Maria A. Rodriguez,⁶ Auayporn Nademanee,⁷ Mark S. Kaminski,⁸ Myron S. Czuczman,⁹ Michael Millenson,¹⁰ Joyce Niland,⁴ Randy D. Gascoyne,² Joseph M. Connors,² Jonathan W. Friedberg,¹¹ and Jane N. Winter¹

NCCN-IPI	Score
Age, y	
>40 to ≤60	1
>60 to ≤75	2
>75	3
LDH, normalized	
>1 to ≤3	1
>3	2
Ann Arbor stage III-IV	1
Extranodal disease*	1
Performance status ≥2	1

Diffuse Large B-cell Lymphoma NOS Morphologic Variants

Diffuse Large B-cell Lymphoma NOS Multilobated Variant

Diffuse Large B-cell Lymphoma NOS Morphologic Variants

Diffuse Large B-cell Lymphoma NOS Spindle Cell Variant

Diffuse Large B-cell Lymphoma NOS Morphologic Variants

Common	Rare
Centroblastic (~80%)	Sinusoidal
Immunoblastic (~10%)	Spindled
Multilobated (<5%)	Myxoid
Anaplastic (<5%)	Signet Ring
	Rosettes

Does morphology correlate with prognosis ?

Immunoblastic morphology but not the immunohistochemical GCB/nonGCB classifier predicts outcome in diffuse large B-cell lymphoma in the RICOVER-60 trial of the DSHNHL

German Ott,^{1,2} Marita Ziepert,³ Wolfram Klapper,⁴ Heike Horn,² Monika Szczepanowski,⁴ Heinz-Wolfram Bernd,⁵ Christoph Thorns,⁵ Alfred C. Feller,⁵ Dido Lenze,⁶ Michael Hummel,⁶ Harald Stein,⁶ Hans-Konrad Müller-Hermelink,¹ Matthias Frank,⁷ Martin-Leo Hansmann,⁷ Thomas F. E. Barth,⁸ Peter Möller,⁸ Sergio Cogliatti,⁹ Michael Pfreundschuh,¹⁰ Norbert Schmitz,¹¹ Lorenz Trümper,¹² Markus Loeffler,³ and Andreas Rosenwald¹

Blood 116: 4916, 2010

Diffuse Large B-cell Lymphomas of Immunoblastic Type Are a Major Reservoir for MYC-IGH Translocations

Heike Horn, PhD,* Annette M. Staiger, MSc,* Matthias Vöhringer, MD,† Ulrich Hay, MD,‡ Elias Campo, MD,§ Andreas Rosenwald, MD, \parallel German Ott, MD,* and M. Michaela Ott, MD¶

The authors assessed 107 DLBCL using FISH with MYC breakapart and *MYC-IGH* fusion probes

MYC translocations detected in

13 / 39 (33%) immunoblastic 5 / 68 (7%) centroblastic

All immunoblastic DLBCL with *MYC* translocations had *MYC-IGH* fusions

Am J Surg Pathol 39: 61, 2015

Immunophenotyping of DLBCL What Is The Purpose ?

In the past Diagnosis

Currently Diagnosis Prognosis Identifying targets for therapy

Monoclonal Antibodies are Being Added to Standard Therapy

CD20 is used for diagnosis and is a therapeutic target

Potential Targets Assessable by IHC

Target	Drug	Pathway
CD19	Tafasitamab	B-cell receptor signaling
CD30	Brentuximab vedotin	NF-κB
CD38	Daratumumab	Cell migration, adhesion, signaling
CD79A	Polatuzumab vedotin	B-cell receptor signaling
ВТК	Ibrutinib	B-cell receptor signaling
XPO1	Selinexor	Selective inhibitor of nuclear export
BRAF, MEK	Vemurafinib, cobimetinib	MAP kinase
BCL-2	Venetoclax	Apoptosis
PD-L1/L2	Nivolumab, others	Checkpoint inhibitors

Common Translocations in DLBCL

t(3;14)(q27;q32); *BCL6::IGH* ~25% BCL6 also partners with other genes

t(14;18)(q32;q21); *IGH::BCL2* ~20%

t(8;14)(q24;q32); *MYC::IGH* ~10% MYC also partners with other genes

MYC Rearrangment is Prognostic in DLBCL

t(8;14)(q24;q32) - *IGH*(80%) t(8;22)(q24;q11) - *IG*λ (15%) t(2;8)(p11;q24) - *IG*κ (5%)

Diagnostic tests

Conventional cytogenetics Need viable cells

FISH

IGH and MYC probes MYC breakapart probe

Blood 114:3533, 2009

MYC Extra Copies by FISH Predict Poorer Prognosis in DLBCL

Andres Quesada, MD

Increased *MYC* copy number is an independent prognostic factor in patients with diffuse large B-cell lymphoma

Andrés E Quesada¹, L Jeffrey Medeiros¹, Parth A Desai¹, Pei Lin¹, Jason R Westin², Huda M Hawsawi¹, Peng Wei³, Guilin Tang¹, Adam C Seegmiller⁴, Nishitha M Reddy⁵, C Cameron Yin¹, Wei Wang¹, Jie Xu¹, Roberto N Miranda¹, Zhuang Zuo¹ and Shaoying Li¹

Mod Pathol 30: 1688, 2017

Diffuse Large B-cell Lymphoma Gene Expression Profiling Using DNA Microarrays

Ash Alizadeh, MD, PhD

Lymphochip with 17,856 cDNA clones12,069Germinal center B-cell genes2,338B-cell NHL genes

3,186 Activated lymphocyte genes

Louis Staudt, MD, PhD

Nature 403: 503, 2000

Diffuse Large B-cell Lymphoma

Nature 403: 503, 2000

Diffuse Large B-cell Lymphoma GEP Shows 2 Types that Predict Prognosis

CHOP Therapy

Nature 403: 503, 2000

Germinal Center Reaction

Diffuse Large B-cell Lymphoma GEP is Valid for R-CHOP Treated Patients

N Engl J Med 359: 2317, 2008

Can Immunohistochemistry be used as a Surrogate for GEP in DLBCL?

VOLUME 35 · NUMBER 22 · AUGUST 1, 2017

JOURNAL OF CLINICAL ONCOLOGY

ORIGINAL REPORT

Clinical Impact of the Cell-of-Origin Classification and the *MYC/BCL2* Dual Expresser Status in Diffuse Large B-Cell Lymphoma Treated Within Prospective Clinical Trials of the German High-Grade Non-Hodgkin's Lymphoma Study Group

Annette M. Statiger, Marita Ziepert, Heike Horn, David W. Scott, Thomas F.E. Barth, Heinz-Wolfram Bend, Alfred C. Feller, Wolfram Klapper, Monika Szczepanowski, Michael Hummel, Hanald Stein, Dido Lenze, Martin-Loo Hansmann, Sylvia Hartmann, Peter Möller, Sergio Cogliatti, Georg Lenz. Lorenz Triunper, Markus Löffler, Norbert Schmitz, Michael Pfreundschuh, Andreas Rosenwald, and German Ott for the German High-Grade Lymphona Study Group

A,C,E. RICOVER-60 trial B,D,F. R-MegaCHOEP trial

Cell-of-origin classification did <u>not</u> correlate with prognosis

J Clin Oncol 35:2515, 2017

R-CHOP+Ibrutinib for DLBCL Impact of GCB versus ABC

Nat Med 21: 922, 2015

Mutations in Pathways Involved in DLBCL

B-cell receptor signaling CD79A, CD79B, CARD11 NF-κB **Toll-like receptor signaling MYD88** Lymphocyte differentiation TNFAIP3/A20, TRAF3, BIRC3, IKK β **DNA repair and transcriptional regulation p53** Lymphocyte activation STAT6, BCL10 **DNA methylation** EZH2, MLL2 **DNA** acetylation **CREBBP, MEF2B Immune surveillance** β2M, CD58

Diffuse Large B-cell Lymphoma, NOS

Rearrangements and mutations correlate with COO

Frequency of Mutations

Diffuse Large B-cell Lymphoma, NOS 3 Major Studies on Molecular Subgroups

Chapuy B, et al. Molecular subtypes of diffuse large B cell lymphoma are associated with distinct pathogenic mechanisms and outcomes. Nat Med 2018; 24:679-690. (Harvard)

Wright GW, et al. A probabilistic classification tool for genetic subtypes of diffuse large B cell lymphoma with therapeutic implications. Cancer Cell 2020; 37:551-568. (LymphGen NIH)

Lacy SE, et al. Targeted sequencing in DLBCL, molecular subtypes, and outcomes: a Haematological Malignancy Research Network report. Blood 2020; 135:1759-1771.

Comparison of Three Systems

LymphGen	Modified HMRN	Harvard	Main gene mutations	coo	Outcome	Related Lymphoma
MCD	MYD88	C5	MYD88L265P, CD79B, PIM1	ABC	Poor	Primary CNS Lymphoma, Primary Testicular Lymphoma
EZB	BCL2	СЗ	BCL2, EZH2, CREBBP,	GCB	Good	Follicular Lymphoma
EZB-MYC+	BCL2-MYC		KMT2D	405	Poor	Double-hit Lymphoma
BN2	NOTCH2	C1	NOTCH2, BCL10, SPEN, CD70, BCL6	ABC, GCB, UC	Intermediate/ Good	Marginal Zone Lymphoma
ST2	TET2/SGK1	C4	TET2, SGK1, KLHL6, BRAF, MAP2K1, KRAS	GCB	Good	Nodular Lymphocyte Predominant Hodgkin Lymphoma
	SOCS1/SGK1		SOCS1, SGK1, CD83, NFKBIA, HIST1H1E, STAT3	GCB	Very Good	Primary Mediastinal B-Cell Lymphoma
N1	NOTCH1		NOTCH1, ID3	ABC	Poor	Chronic Lymphocytic Leukaemia
A53		C2	TP53, aneuploidy	Mixed	Intermediate	
Other	NEC	CO		ABC, GCB, UC	Intermediate	
Wright		Chapuy				

Courtesy of Daniel Hodson, MD Cambridge, UK

A Probabilistic Classification Tool for Genetic Subtypes of Diffuse Large B Cell Lymphoma with Therapeutic Implications

George W. Wright,¹ Da Wei Huang,² James D. Phelan,² Zana A. Coulibaly,² Sandrine Roulland,² Ryan M. Young,² James Q. Wang,² Roland Schmitz,² Ryan D. Morin,³ Joffrey Tang,³ Aixiang Jiang,³ Aleksander Bagaev,⁴Olga Piotnikova Nikita Kottov, ⁴ Calvin A. Johnson,⁹ Wyndham H. Wilson,² David W. Scott,⁶ and Louis M. Staudt^{2,7,4}

LymphGen Classifier

DLBCL Subgroups

MCD

MYD88 + CD79B mutations

N1

NOTCH1 pathway

A53

Aneuploidy + TP53 mutations

BN2

BCL6 fusions + **NOTCH2** mutations

ST2

SGK1 and TET2 mutations

EZB

EZH2 mutations + *BCL2* translocations

DLBCL Genetic Subtypes Implications for Pathogenesis and Therapy

Potential drug targets

MCD BTK, PI3K, BCL2, JAK

N1

A53

BN2 BTK, PI3K, BCL2

ST2 PI3K, JAK

EZB EZH2, PI3K, BCL2

Cancer Cell 37: 551, 2020

Take Home Points

The traditional cell-of-origin model (GCB vs ABC) is not sufficiently granular to predict prognosis or to plan therapy

For now, we will need to keep using this model, but only until a better, more practicable system becomes available

A new model may not lead to optimal therapy currently, but it will lead to design of clinical trials and evaluation of therapies

However, this new system needs to be practical